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Abstract
Background: CD4+ T-cell epitope immunodominance is not adequately explained by peptide
selectivity in class II major histocompatibility proteins, but it has been correlated with adjacent
segments of conformational flexibility in several antigens.

Methods: The published T-cell responses to two venom allergens and two aeroallergens were
used to construct profiles of epitope dominance, which were correlated with the distribution of
conformational flexibility, as measured by crystallographic B factors, solvent-accessible surface,
COREX residue stability, and sequence entropy.

Results: Epitopes associated with allergy tended to be excluded from and lie adjacent to flexible
segments of the allergen.

Conclusion: During the initiation of allergy, the N- and/or C-terminal ends of proteolytic
processing intermediates were preferentially loaded into antigen presenting proteins for the
priming of CD4+ T cells.

CD4+ T-cell responses to dominant epitopes of protein
allergens drive the development of allergic responses.
CD4+ T-cells provide help to B cells that produce allergen-
specific IgE, which is responsible for life-threatening ana-
phylactic reactions to allergens such as in insect venoms.
Immunotherapy also depends on priming of CD4+ T-cells
that either suppress the development of IgE-producing B-
cells or help the development of IgG-producing B cells [1].

The epitope specificity of CD4+ T cells varies greatly
among individuals; but when analyzed for a population,
the dominance of certain epitopes becomes apparent,
with some dominant epitopes recognized by a majority of
subjects. The CD4+ T-cell epitope immunogenicity

appears to have only a weak relationship to the composi-
tion of human leukocyte antigen (HLA) alleles in
responding individuals [2-4]. Thus, CD4+ T-cell epitope
dominance may be controlled at least in part by mecha-
nisms of antigen processing.

Allergens taken up by professional antigen-presenting
cells (APCs) are transported to an antigen processing com-
partment, where they or their peptide derivatives are
loaded into class II major histocompatibility antigen-pre-
senting proteins (MHCII) and proteolytically trimmed
prior to display on the cell surface to T cells [5,6]. Acidifi-
cation of the compartment modulates virtually all aspects
of processing and presentation [7]. Acidification stimu-
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lates the activity of proteases responsible for antigen
processing as well as maturation of the MHCII; it activates
the peptide-exchange catalyst DM (also known as HLA-
DM in humans) and the γ-interferon inducible lysosomal
thiol reductase (GILT); and it destabilizes antigen struc-
ture. The degree of acidification depends on the type of
antigen-presenting cell and degree of activation by danger
signals, e.g., through Toll-like receptors.

Allergen/antigen structure has the capacity to modulate
the accessibility of proteases and MHCII during antigen
processing and presentation. Protease- and MHCII-bind-
ing sites form hydrogen bonds and other non-covalent
contacts with allergen backbone and sidechain groups
that, in the native allergen, stabilize three-dimensional
structure. Low pH in the antigen-processing compartment
is expected to destabilize the structure of allergens, but
many proteins remain in a native or native-like conforma-
tion at low pH's [8,9]. The tendency for proteases to cleave
initially in domain linkers and in flexible loops is well
known, and the energetic penalty for unfolding 10–12 res-
idues of polypeptide was found sufficient to explain the
site selectivity of a serine protease acting on a native pro-
tein substrate [10]. The MHCII peptide-binding site enve-
lopes an approximately 15-residue stretch of allergen [11],
and thus MHCII binding to a structured protein is
expected to involve an even larger energetic barrier than is
involved in protease binding.

The dependence of CD4+ epitope immunogenicity on
local structural context has been examined for a number
of epitopes and antigens. Epitope presentation often may
depend on an initial proteolytic-processing event. The
engineering of a nearby dibasic protease-recognition
sequence dramatically increased the presentation of an
epitope in hen egg lysozyme [12]. The blocking of a cleav-
age site substantially reduced the overall immunogenicity
of tetanus toxoid, presumably because the cleavage was
necessary to globally unlock protein unfolding and fur-
ther processing [13]. A more general demonstration of the
relationship between structure and epitope dominance
relies on the correlation between protease-sensitivity and
conformational flexibility. The relative probability that a
particular protein segment will be cleaved by a protease
can be estimated by structural parameters that indicate
conformational flexibility, such as crystallographic B fac-
tors, solvent-accessible surface area, or amide-group
hydrogen/deuterium exchange (HX) [14-17]. Correla-
tions of epitope dominance with one or more measures of
flexibility has been reported for a number of antigens and
allergens [18-22], but these studies have not identified the
systematic exclusion of epitopes from the center of flexi-
ble segments in allergens, as is expected if proteolysis pre-
cedes MHCII binding.

This study analyzes the relationship of structure and
CD4+ T-cell epitope dominance in the yellow jacket
(wasp) venom allergen Ves v 5 and three additional unre-
lated allergens, and the results are interpreted in terms of
a model for how allergen structure modulates allergen
processing and epitope presentation.

Methods
Epitope dominance was analyzed by converting peptide
responses to a residue-by-residue epitope score, which cor-
responds to the average response to all peptides that con-
tain the residue. In the study by Bohle et al., the specificity
of T-cell lines or T-cell clones from 13 allergic individuals
were mapped using a series of 12-mer peptides spanning
the complete sequence of Ves v 5 with 9-residue overlaps
[2]. This density of coverage results in exceptionally good
resolution of epitope positions. Proliferative responses
were considered positive when the stimulation index (SI)
was greater than 4 for lines cultured from the peripheral
blood mononuclear cells (PBMC) of allergic individuals.
Epitope-mapping data for the other allergens were han-
dled similarly, and relevant sources and features of the
analysis are presented in Table 1.

Calculation of epitope scores, alignment of datasets, and
analysis of correlation vs. offset were performed using
Microsoft Excel. Significance tests were performed using
GraphPad Prism. Residue-stability profiles were calcu-
lated using the COREX/BEST implementation at http://
www.best.utmb.edu/BEST/ with default values for all
parameters [23]. Entropy factors were estimated with the
COREX/BEST implementation, but they typically resulted
in residue-stability profiles with less dispersion than
could be obtained with a slightly lower entropy factor.
Thus, the entropy factor was adjusted downward from the
estimated value by 0.02. Residue solvent accessibilities
were calculated using MOLMOL [24]. Crystal structures
used for calculation of residue-stability and solvent acces-
sibility are listed in Table 1. Since an high-resolution
structure was not available for Cry j 1, an homology
model was obtained on the basis of the structure of Jun a
1 (80% identical) using SwissModel [25]. For analysis of
sequence entropy, homologous proteins were identified
by the method noted in Table 1 and aligned using Clus-
talW [26]. Sequence entropy calculations were performed
using BioEdit [27]. Significance of correlations was evalu-
ated using t tests implemented in GraphPad Prism. In
order to properly represent the sampling frequency of Ves
v 5 epitope-mapping data, the significance tests were
applied to paired datasets from which two-thirds of the
points had been removed by retaining every third point.

For the identification of flexibility maxima in Ves v 5, pro-
files of B-factor, solvent-exposed surface area, and
sequence entropy were smoothed with a 15-residue mov-
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ing-window average. A "first-derivative" profile was gener-
ated by taking the difference between smoothed values for
the current residue and the preceding residue. The first-
derivative profile was smoothed with a 9-residue moving
window average, and local maxima were assigned to resi-
dues where the smoothed first derivative became negative.
For the identification of minima in COREX stability, a
first-derivative profile was generated as described above
using the raw COREX stability profile. The first-derivative
profile was smoothed with a 7-residue moving window
average, and local minima were assigned to residues
where the smoothed first derivative became positive. Flex-
ibility data for the other allergens were processed simi-
larly, and the relevant sources and processing parameters
are presented in Table 1.

Results
Consistent patterns of flexibility/stability
Previous studies suggested that CD4+ epitopes tend to
occur adjacent to proteolytic cleavage sites used during
antigen processing [18-22]. Proteolytic cleavage sites were

predicted on the basis of local conformational flexibility;
and in some cases, proteolytic sensitivity was confirmed
by limited proteolysis in vitro [28]. In order to identify
probable sites of proteolytic cleavage in Ves v 5, the distri-
bution of conformational flexibility in Ves v 5 was ana-
lyzed using three types of data based on the Ves v 5 crystal
structure: the crystallographic B-factors for the backbone
amide nitrogens, the fraction of amino-acid surface area
that is solvent-accessible, and the COREX residue stability.
Since flexible protein sequences tend to be poorly con-
served [29], sequence entropy also was analyzed in a fam-
ily of proteins homologous to Ves v 5. When mapped
onto a ribbon diagram of the Ves v 5 crystal structure, it
can be seen that the regions of high B-factor, high solvent-
accessible surface area, low COREX stability, and high
sequence entropy are located in similar regions of the pro-
tein. These regions are primarily in loops and turns
between regular secondary-structure elements (Fig. 1).

Table 1: Allergen references and analytical  parameters.

Allergen Ves v 5 Api m 1 Phl p 1 Cry j 1

aka pathogenesis-related protein phospholipase a2 expansin family Polysaccharide lyase
Source yellow jacket honey bee timothy grass Japanese cedar
No. Residues 204 134 240 374

Epitopes
No. Subjects 13 20 9 18
Peptide length 12 16* 12 15
Peptide overlap 9 10* 9 10
Step 3 8* 3 6
No. Peptides 65 19 76 69
Reference [2] [54] [55] [56]

Corex stability
Structure file 1qnx 1poc 1n10 Cry j 1 model
Reference [53] [57] to be published [58]
Monte Carlo sampling no no no yes
Entropy scaling 0.994 0.885 0.85 1.039
Structure method X-ray X-ray X-ray X-ray
Homology model, template no no no yes, 1pxz

B-factor
Structure file 1qnx 1poc 1n10 1pxz
Averaging window size 15 11 15 15
1st derivative averaging window size 9 11 9 9

Sequence entropy
No. Homologs aligned 50 15 97 51
Range of identity 24–97% 11–77% 21–90% 10–75%
Strategy for identification blast Genbank non-redundant blast Swiss-Prot blast Swiss-Prot blast Swiss-Prot
Averaging window size 15 15 15 15
1st derivative averaging window size 9 9 9 9

*average value, peptide series not regular
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Ribbon diagrams indicating flexible segments of the Ves v 5 crystal structure [53]Figure 1
Ribbon diagrams indicating flexible segments of the Ves v 5 crystal structure[53]. Colored portions indicate regions 
of above-average flexibility as measured by crystallographic B-factors (A), solvent-accessible surface (B), COREX residue stabil-
ity (C), and sequence entropy (D). Space-filled atoms correspond to disulfide-bonded cysteine residues. Numbers indicate the 
positions of residues near the centers of flexible sites.
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Allergenic epitopes on flanks of flexible segments
When aligned with the profile of epitope score for allergic
individuals, the various profiles of flexibility reveal a
number of peaks or valleys (five to seven) that is similar
to the number of peaks of epitope score (six). As has been
noted previously for other antigens, some Ves v 5 epitopes
occur on the flanks of peaks of flexibility. For example, the
peaks of epitope score near residues 125 and 150 occur C-
terminal from adjacent flexibility maxima and N-terminal
from adjacent flexibility minima, and the pattern of flexi-
bility in these regions of Ves v 5 is consistently reported by
all four measures of flexibility/stability (Fig. 2A).

The peak of epitope score near residue 25 is located in a
large N-terminal segment of irregular structure that is
characterized by partially overlapping peaks of flexibility
and a broad region of very low COREX residue stability.

Rather than being located on the flank of a well-defined
maximum of flexibility, this peak of epitope score is
located in the middle of a large flexible N-terminal region
of the protein. This region most likely is ordered in the
crystal structure because two disulfide bonds stabilize it,
but it could easily be disordered in mildly denaturing con-
ditions or after cleavage of the disulfide bonds (which
may occur in an antigen-processing compartment).

In order to quantify the strength of the relationship
between epitope dominance and conformational flexibil-
ity and to investigate the mechanism, the profiles of flexi-
bility/stability and epitope score were tested for
correlation at various offsets of one dataset to the other.
The procedure effectively tests for correlations between
epitopes and flexibility in nearby N-terminal or C-termi-
nal segments. Plots of correlation vs. offset illustrate a

Correlation of allergenic T-cell epitope dominance with adjacent segments of flexibility in Ves v 5Figure 2
Correlation of allergenic T-cell epitope dominance with adjacent segments of flexibility in Ves v 5. In A, profiles 
of flexibility or stability (indicated by the line plots) are superimposed on the profile of epitope score (area plot), which is based 
on the T-cell responses reported by Bohle et al. [2]. In B, plots of correlation coefficient vs. offset for the full-length Ves v 5. In 
C, plots of correlation coefficient vs. offset for the protein N-terminally truncated at residue 57.
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transition from positive on the left to negative on the
right, indicating that epitope dominance correlates with
N-terminal flexibility and C-terminal stability in the adja-
cent sequences (Fig. 2B). The maximum correlations (or
anti-correlations) and offsets are as follows: B-factor, 0.42
at offset = -8; solvent-exposed area, 0.32 at offset = -6; and
sequence entropy, 0.26 at offset = -6. The correlation of
epitope score and residue stability did not achieve signifi-
cance (p < 0.05) over the range of offset tested. Thus, for
three out of four flexibility criteria, optimum correlations
were obtained at similar values of offset. These initial
results suggested that epitopes occur 6 to 8 residues C-ter-
minal from flexible sites.

In the course of the analysis, it became clear that the cor-
relation of epitope score with flexibility breaks down in
the N-terminal irregularly structured region of Ves v 5; and
thus the correlations were reevaluated for a portion of the
protein lacking this segment (Fig. 2C). For Ves v 5 trun-
cated at residue 57, significant correlations and significant
anti-correlations with flexibility were observed for opti-
mum values of negative and positive offset, respectively.
At negative offset, correlations and offsets are as follows:
B-factor, 0.47 at offset = -10; solvent-exposed area, 0.47 at
offset = -10; and sequence entropy, 0.46 at offset = -10. At
positive offset, anti-correlations were as follows: B-factor,
-0.37 at offset = 4; solvent-exposed area, -0.54 at offset =
4; sequence entropy, -0.51 at offset = 6. The correlation
with COREX residue stability achieved a maximum of
0.35 at offset = 0. Thus, in the analysis of Ves v 5 residues
57–204, correlations were obtained with all four flexibil-
ity criteria, and the correlations were stronger. The values
of offset suggest that epitopes occur 10 residues C-termi-
nal from flexible sites and 4–6 residues N-terminal from
stable/inflexible sites. The correlation with residue stabil-

ity suggests that epitopes occur right on top of the stable/
inflexible sites.

Exclusion of allergenic epitopes from flexible segments in 
a selection of well-characterized allergens
Although significant correlations were occasionally
observed in other allergens, the correlation coefficients
were small (|r| < 0.25). In some cases, correlations exhib-
ited two maxima, one on each flank of the flexible site
(data not shown). As we have noted previously in survey-
ing CD4+ epitope maps [30], epitopes tend to occur on
either the N- or C-terminal flank of flexible sites. In Ves v
5 the C-terminal flanks are preferentially loaded, but in
other antigens/allergens the preference is opposite, or
there is a mixture of the two. When both flanks are uti-
lized in the same antigen/allergen, any correlation that
uses a particular offset has a low correlation coefficient.

The tendency for epitopes to be localized adjacent to flex-
ible sites suggests that they are less likely to occur within
the flexible site. In order to visualize the relationship of
flexible segments and dominance peaks, the flexibility
maxima (or stability minima) were plotted as single
points on a graph of epitope score in allergic individuals.
In this illustration, epitopes appear to be excluded from
segments of maximum flexibility/instability, with the
exception of the dominance peak at residue 25 (Fig. 3).

In order to demonstrate the generality of this pattern, the
same analysis was applied to the bee venom allergen, Api
m 1, and pollen allergens, Phl p 1 (Timothy grass) and Cry
j 1 (Japanese cedar).

For Api m 1, the maxima from the flexibility profiles
yielded very tight clusters (Fig. 4). Two of the clusters

Localization of T-cell epitopes between peaks of conformational flexibility in Ves v 5Figure 3
Localization of T-cell epitopes between peaks of conformational flexibility in Ves v 5.
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coincided with minima in the residue-stability profile
(near residues 49 and 119). A third cluster defined by B-
factor, solvent-accessible area, and sequence entropy was
located in the center of a broad peak of residue stability
(near residue 77). Thus, it is clear that reliance on residue
stability for identifying flexible sites may miss some of
them, and the combination of criteria provides a robust
strategy for identifying flexible sites. In Api m 1, the three
prominent flexible sites were each associated with a gap in
the T-cell response on the N-terminal side and a peak of T-
cell response on the C-terminal side, which is similar to
the pattern observed for Ves v 5.

In Phl p 1, the three most allergenic segments were N-ter-
minally adjacent to tightly clustered maxima near residues
82, 120, and 145 (Fig. 5). The next most allergenic seg-
ments are C-terminally adjacent to flexible sites near resi-
dues 184 and 221. The remaining allergenic segments

were associated with flexible sites that partially overlap
the epitopes. The N-terminal allergenic segment is cen-
tered on a segment (near residue 35) that is so flexible that
it was disordered in the crystal structure. Two other weakly
allergenic segments were associated with flexible seg-
ments (near residues 145 and 184) that lie between major
domains or subdomains.

In Cry j 1, the flexibility minima are well-clustered in reg-
ularly-spaced groups (Fig. 6). Peaks of epitope dominance
were located neatly between the clusters.

Discussion
The pattern of CD4+ epitope dominance that was
observed for Ves v 5 in allergic individuals supports the
hypothesized relationship to allergen structure. The
number of allergenic epitopes is similar to the number of
peaks of structural flexibility or stability, and the epitopes

Localization of T-cell epitopes between peaks of flexibility in Api m 1 and the ribbon diagram of the Api m 1 crystal structureFigure 4
Localization of T-cell epitopes between peaks of flexibility in Api m 1 and the ribbon diagram of the Api m 1 
crystal structure. The ribbon diagram is colored by B-factor (red, high; blue, low), and numbers indicate the positions of res-
idues near the centers of flexible sites.
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Localization of T-cell epitopes between peaks of flexibility in Phl p 1 and the ribbon diagram of the Phl p 1 crystal structure (as described in Fig. 4, legend)Figure 5
Localization of T-cell epitopes between peaks of flexibility in Phl p 1 and the ribbon diagram of the Phl p 1 crys-
tal structure (as described in Fig. 4, legend).
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tend to be situated between the flexible and inflexible
regions. The most frequent spacing of epitopes between
flexible and inflexible regions (10 residues C-terminal
from a flexibility maximum and 4–6 residues N-terminal
from a stability maximum) is remarkably similar to the
spacing of 12 residues C-terminal from the flexibility max-
imum that was described for T-helper epitopes in the
outer domain of HIV gp120 [31].

The spacing observed in Ves v 5 is different from that
observed in influenza hemagglutinin, wherein epitopes
most frequently occurred 10 residues C-terminal from the
stability maximum, rather than the flexibility maximum
[30]. However, the pattern in hemagglutinin was a mirror-
image of the pattern in Ves v 5 and gp120. In hemaggluti-
nin, epitopes were on the N-terminal side of flexible seg-
ments, rather than the C-terminal side. For all three
antigens/allergens, epitopes tended to be excluded from
the most flexible sites in the proteins.

In the following discussion, patterns of epitope domi-
nance will be discussed in the context of a mechanism by
which allergen structure directs CD4+ T-cell epitope dom-
inance. The mechanism is hypothesized to have the fol-
lowing elements:

1. Epitope dominance is due to preferential presentation
of certain peptide-MHCII complexes. Although at least
one report argues that the abundance of epitope presenta-
tion has little influence on immunodominance [32],
other studies suggest that antigen processing and presen-
tation have a potent influence on immunodominance
[19,33,34]. We take the position that, especially in regard
to promiscuously dominant epitopes (which are pre-
sented by more than one allele of MHCII), the cause of the
dominance is the preferential presentation of the epitope.

2. Proteases and MHCII co-mingle in the antigen-process-
ing compartment and therefore can compete for the
sequences that satisfy requirements for binding to both
proteases and MHCII. The following observations support
this postulate. Several proteases are implicated in the
processing of both antigens and the MHCII-bound invar-
iant chain [35-37]. The proteolytic separation of two
MHCII-bound epitopes was found to be a rate-limiting
step in presentation of the epitopes [38]. The level of
activity of asparagine endopeptidase (AEP) can control
the presentation of an epitope that contains a cleavage site
for AEP [39].

3. The antigen/allergen remains in a native-like conforma-
tion through the initial proteolytic nicking of the protein
and/or loading of a fragment into an MHCII. Studies of
protein folding and stability have provided examples in
which proteins retain elements of native-like structure at
low pH [9], following proteolytic nicking [40,41], and
when parts of the protein are demonstrably unfolded
[42,43].

4. Proteases and MHCII preferentially bind to antigen/
allergen sequences that have low conformational stability
and adequate affinity for the binding site. To some extent,
these two properties could be mutually exclusive. For
example, hydrophobic sidechains can stabilize binding of
an antigen segment to both proteases [44] and MHCII
[45,46], but hydrophobic sidechains also tend to be bur-
ied in structurally stable elements of protein structure
[47], where they are unavailable for binding. Thus, there
exists a three-way competition for interactions with anti-
gen/allergen sequences that involves intramolecular fold-
ing, binding to the protease, and binding to the MHCII.

5. Proteases bind shorter flexible segments of antigen/
allergen than MHCII [11,48]. It follows that the on-rates

Localization of T-cell epitopes between peaks of flexibility in Cry j 1 and the ribbon diagram of the crystal structure for the Cry j 1 homolog, Jun a 1 (as described in Fig. 4, legend)Figure 6
Localization of T-cell epitopes between peaks of flexibility in Cry j 1 and the ribbon diagram of the crystal 
structure for the Cry j 1 homolog, Jun a 1 (as described in Fig. 4, legend).

0

2

4

6

8

10

12

-20

-10

0

10

20

30

40

50

0 50 100 150 200 250 300 350

Number of

Individuals

Residue

Stability

(log Kf)

Residue Number

Epitope Score

Res Stability

B-factor

Exposed Area

Seq Entropy

Res Stability 52

306274

248

224
195
171
126

104
Page 8 of 12
(page number not for citation purposes)



Clinical and Molecular Allergy 2008, 6:9 http://www.clinicalmolecularallergy.com/content/6/1/9
of proteases are faster than the on-rates of MHCII because
the smaller binding sites require less reordering of the
polypeptide and because short flexible segments occur
with higher frequency than the long flexible segments in
the natively folded antigen/allergen.

6. MHCII bind stably to epitopes that have adequate bind-
ing affinity. Thus, the MHCII protect the bound segments
from proteolysis [49]. However, the kinetics of MHCII
binding and dissociation are modulated by DM, which
responds to APC activation [7,50].

7. The extensive and stable interactions of antigen/aller-
gen segments with the MHCII provide a driving force for
unfolding the antigen. Although we are unaware of any
direct evidence supporting this postulate, peptide binding
to MHCII has been described as cooperative process akin
to protein folding [51]. In the absence of coupling to any
energy source, the assembly of the peptide-MHCII com-
plex and disassembly of the antigen/allergen structure

may be considered two sides of a thermodynamic equilib-
rium.

These elements have been incorporated into a model for
processing and presentation of allergenic epitopes (Fig.
7). The model illustrates the presentation of two epitopes
but it is not intended to suggest that both epitopes are pre-
sented from every molecule, nor is it to suggest that other
epitopes would not also be presented. These two epitopes
are examples of two types, "deep" and "shallow", which
are distinguished by the order of proteolysis and peptide
loading. In the upper pathway, proteolysis precedes load-
ing of the "deep" epitope. In the lower pathway, loading
of the "shallow" epitope precedes proteolysis. Although it
is possible that an antigen/allergen would be cleaved at
multiple sites and adjacent epitopes be presented from
each fragment, the fact that most allergic individuals
mount a response to only one or two epitopes suggests
that the more likely scenario is the presentation of one or
two epitopes after a single proteolytic event. Subsequent
proteolytic cleavages may produce fragments that are too

Models for Ves v 5 processing and the presentation of allergenic and epitopesFigure 7
Models for Ves v 5 processing and the presentation of allergenic and epitopes. Stable protein segments are shaded. 
For clarity, only three stable segments are illustrated. Presentation of the deep epitope (upper pathway) requires an initial 
cleavage that yields a proteolytic fragment whose N-terminal end binds to the MHCII. In the course of DM-catalyzed dissocia-
tion and rebinding, the fragment unfolds and optimizes interaction with the MHCII binding site. Presentation of the shallow 
epitope (lower pathway) is similar; except that an initial cleavage is not required before MHCII binding, and no significant 
unfolding occurs during DM-catalyzed dissociation and rebinding. Proteolytic trimming of the MHCII-bound fragments yield 
MHCII-peptide complexes that traffic to the surface of the APC.

DM

DM

C

N

1

C

DM

C

N

C

N

C
N

acidification and
endo-proteolysis

C
N

C

N

C

N

C

N

N

endo-/exo-proteolytic
trimming

C

N

C

N

DM
N

DM

Deep epitope

Shallow epitope

N N

MHCII binding, DM-catalyzed
exchange and unfolding

DM
N

C

C

N

C

C

C

MHCII binding,
acidification, and
endo-proteolysis

DM-catalyzed exchange
endo-/exo-proteolytic
trimming
Page 9 of 12
(page number not for citation purposes)



Clinical and Molecular Allergy 2008, 6:9 http://www.clinicalmolecularallergy.com/content/6/1/9
small and unstable to resist complete proteolytic degrada-
tion.

Six of seven peaks of epitope dominance in Ves v 5 lie
adjacent to peaks of flexibility. In the model, this pattern
of epitope dominance is shown to arise from an initial
endoproteolytic nick in a flexible segment, followed by
loading of an adjacent epitope in the MHCII (Fig. 7, upper
pathway). The regularity of this relationship is highlighted
in the plot illustrating the flexibility maxima as single data
points (Fig. 3). These six epitopes are effectively excluded
from the most flexible regions, and they overlap the least
flexible regions. Since these epitopes include residues that
are buried in the protein interior, they are called "deep"
epitopes. These epitopes are partially buried or otherwise
sequestered from MHCII binding by three-dimensional
structure until proteolytic nicking at a nearby site renders
the epitope more accessible.

The dominance peak at residue 25 of Ves v 5 is exceptional
in that it lies squarely over a flexibility maximum as
defined by several criteria. This "shallow" epitope requires
no proteolysis and little unfolding for loading into the
MHCII. The dominance of this epitope probably results
from a combination of good flexibility/accessibility and
protection from proteolysis by continued association with
the MHCII through multiple cycles of DM-catalyzed dis-
sociation and rebinding (Fig. 7, lower pathway).

The positions of epitopes in venom allergen Api m 1 and
pollen allergens Phl p 1 and Cry j 1 were not so regularly
spaced from a maximum or minimum of flexibility that
significant correlations could be identified at a single off-
set (data not shown). Nevertheless, most of the epitopes
were excluded from the center of flexible segments. This
pattern is consistent with cleavage of these allergens in the
flexible regions, followed by loading into the MHCII of
the newly generated fragments. Apparent exceptions to
this general trend are discussed in the following.

All three dominance peaks in Api m 1 overlap the adjacent
peaks of flexibility, which would seem to be incompatible
with the "proteolysis-first" mechanism. However, as for
most antigens/allergens, the naturally-processed MHCII
ligands for Api m 1 have not been characterized, and thus
we do not know the exact position of the N-termini. In the
available study of Api m 1, epitopes were mapped using
an irregular series of peptides that spanned the sequence
in an average of 8-residue steps. Thus, it is possible that
that the epitopes could be refined to smaller sequences
whose N-terminal ends coincide with the most flexible,
protease-sensitive sites, which would be completely con-
sistent with the "proteolysis-first" mechanism.

For Phl p 1, the epitope(s) near residue 35 seems to be a
strong candidate for the "binding-then-proteolysis" path-
way because the epitope is centered on a 12-residue seg-
ment that was disordered in the protein crystal.
Presumably, this segment has good affinity for the MHCII;
and therefore it resists DM-catalyzed dissociation from
the MHCII and is protected from proteolysis. The weakly
immunogenic epitopes near residues 145 and 184 coin-
cide with regions of flexibility, as defined by all four crite-
ria. The modest immunogenicity of these flexible regions
could be related to their location near the N-terminus of
the second major domain of Phl p 1. An initial cleavage
on the N-terminal side of the epitope at residue 145 may
yield an independent molecule. N-terminal disordered
segments may be particularly good ligands for MHCII.
This hypothesis is consistent with the exceptional immu-
nogenicity of the N-terminal epitope in Ves v 5 and Phl p
1, and it is also consistent with the regular pattern of
epitopes on the C-terminal flank of flexible sites in Ves v
5 and HIV gp120, which suggested that the MHCII binds
near the N-terminus of proteolytic fragments.

The regular pattern of epitope dominance in Cry j 1 is
strikingly similar to the regular pattern of flexible sites in
that protein. In the ribbon diagram, the basis for the pat-
terns is apparent in the regular turns of the pectin-lyase-
like beta helix. Turns of the beta helix recur at an average
interval of 29 residues, and the flexible sites are distrib-
uted in a stripe down one face of the beta helix. Presuma-
bly, any one of these flexible sites can serve as the initial
site for proteolytic cleavage, followed by loading of an
adjacent epitope.

The bias toward dominance of epitopes on the C-terminal
side of flexible sites in Ves v 5 suggests that a feature of
either the loading mechanism or the structure of the pro-
tein favors loading of an N-terminal sequence after an ini-
tial proteolytic cleavage. However, the number of epitopes
illustrating this bias constitutes too small of a sample to
establish such a relationship. Although the epitopes tend
to be closer to flexible sites on the C-terminal side, their
positions are nearly centered on the stable/inflexible seg-
ments, as indicated in Ves v 5 by the anti-correlations with
flexibility at offsets of 4–6 residues and the correlation
with COREX residue stability at zero offset. In a compiled
analysis of epitope spacing in nine antigens/allergens,
epitopes were found to occur with equal frequency on the
N-terminal and C-terminal sides of flexible sites [52]. On
the basis of the data available, the existence of a bias
toward loading the N-terminal or C-terminal fragment in
any given antigen/allergen must be regarded as anecdotal.

Although many details of the allergen processing and
presentation mechanism remain to be elucidated, the
exclusion of epitopes from flexible sites in allergens sug-
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gests that the three-dimensional structure of the allergen
exerts a strong influence on the pattern of CD4+ epitope
dominance by targeting the initial sites of proteolytic
processing.
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