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Abstract 

Background:  Improving the safety of subcutaneous immunotherapy (SCIT) for food allergy is necessary to reduce 
side effects and achieve long-term tolerance. We determined the effect of dietary supplementation with 1% non-
digestible short- and long-chain fructo-oligosaccharides (scFOS/lcFOS) on safety and efficacy of SCIT using a peanut 
allergy mouse model.

Methods:  After sensitization, mice received a scFOS/lcFOS or control diet for the rest of the study. To study safety 
of SCIT, mice were dosed with a single subcutaneous injection of peanut extract (PE) or PBS. To study efficacy, mice 
were dosed subcutaneously (SCIT, 3 times/week) with PE or PBS for 3 weeks. Hereafter, acute allergic skin responses, 
anaphylactic shock symptoms and body temperature were assessed. To study the mechanism in vitro, the human IgE 
receptor (FcεRI)-transfected rat mast cell (RBL) line was sensitized with an oligoclonal pool of chimeric human (chu)IgE 
antibodies against bovine β-lactoglobulin (BLG) and incubated with the oligosaccharides before exposure to BLG to 
assess direct the effect on degranulation.

Results:  scFOS/lcFOS reduced anaphylaxis caused by a single PE SCIT dose. scFOS/lcFOS alone also reduced the 
acute allergic skin response. Moreover, scFOS/lcFOS supplementation resulted in lower MMCP-1 levels in serum after 
PE SCIT dose compared to control diet, while antibody levels were not affected by the diet. In vitro incubation with 
scFOS/lcFOS at 0.5% suppressed the degranulation of IgE-sensitized RBL cells. However, dietary supplementation with 
scFOS/lcFOS did not improve the efficacy of SCIT.

Conclusions:  We show that scFOS/lcFOS diet improves the safety of SCIT, as evidenced by lower anaphylactic 
responses without compromising the efficacy in a mouse model for peanut allergy. This effect is likely to result from 
the suppression of mast cell effector function.
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Background
Food allergy is a major public health issue in Western 
countries, as it affects 8% of American children, of which 
most of them are peanut allergic (25%) [1]. Currently, 
food allergy can only be managed by strict avoidance of 
the causative food and in case of accidental exposure, 

with anaphylactic rescue medication. Therefore, a safe 
therapy leading to persistent tolerogenic protection is 
highly needed.

For many years, desensitization and/or tolerance 
induction to allergens via allergen-specific immunother-
apy (AIT) has been the focus of research. AIT using the 
subcutaneous, oral, or sublingual route provided encour-
aging results in food allergy, despite serious and signifi-
cant safety concerns [2–8]. Two small studies in peanut 
allergic patients showed that subcutaneous immuno-
therapy (SCIT) was associated with reduced symptoms 
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[9, 10]. However, a high rate of serious systemic reac-
tions (13%) made this treatment unsafe for routine use. 
Because of these limitations, although effective, it is cur-
rently not recommended to use immunotherapy for pea-
nut allergy for routine clinical use [11–13].

Combining AIT with a nutritional intervention may 
provide a new window of opportunity to improve the 
efficacy and safety of AIT for food allergic patients. The 
combination of SCIT or sublingual immunotherapy for 
allergic rhinitis or asthma with bacterial products or Toll-
like receptor ligands has demonstrated enhanced and 
persistent beneficial effects in both animals [14–16] and 
patients [17, 18]. However, human data concerning the 
additive effect of supplementation with immunomodula-
tory food components on the safety and efficacy of OIT 
for food allergy is limited. In peanut allergic patients, 
combining OIT with a probiotic strain resulted in a 
long-lasting clinical benefit [19, 20]. Besides probiotics, 
prebiotic components like dietary non-digestible oligo-
saccharides, derived from vegetable or dairy sources, 
also support growth of beneficial bacteria in the gut [21]. 
These oligosaccharides, like short- and long-chain fructo-
oligosaccharides (scFOS/lcFOS), were able to effectively 
prevent the onset of allergy, and prevent allergic manifes-
tations in different mouse models [22–24]. Moreover, in 
whey-sensitized mice a diet supplemented with scFOS/
lcFOS showed improved efficacy of OIT [25]. Therefore, 
non-digestible oligosaccharides administered after sen-
sitization but before SCIT, might provide a better safety 
profile during treatment and therefore might improve the 
efficacy of therapy.

A food allergic reaction is induced by the fast, local and 
systemic release of inflammatory mediators such as hista-
mine, serotonin, and various pro-inflammatory cytokines 
from mast cells and basophils [26]. Consequently, we 
hypothesized that scFOS/lcFOS could have an effect on 
the basophil effector function.

In the current study, it was investigated whether die-
tary supplementation with scFOS/lcFOS can maintain 
the effectiveness in the absence of side-effects of SCIT 
by reducing the allergic response seen after a single SCIT 
dose was administered. Moreover, it was discovered that 
these oligosaccharides have a direct inhibitory effect on 
degranulation of mast cells.

Materials and methods
Mice
Female C3H/HeOuJ mice (5–6-week-old) purchased 
from Charles River Laboratories (Erkrath, Germany) 
were maintained under controlled conditions (relative 
humidity of 50–55%, 12  h light/dark cycle, temperature 
of 23 ± 2 °C). The mice were housed at the animal facility 

of Utrecht University in filter-topped macrolon cages 
(n = 6–8 per cage/group), with wood chipped bedding, 
tissues and a plastic shelter and food and water were pro-
vided ad  libitum. An independent ethics committee for 
animal experimentation (the Ethical Committee of Ani-
mal Research of Utrecht University, Utrecht, The Neth-
erlands) approved animal procedures. All procedures 
complied with the principles of good laboratory animal 
care following the European Directive for the protection 
of animals used for scientific purposes.

Reagents and diets
Peanut protein extract (PE, 30 mg/ml) was prepared from 
raw peanuts (provided by Intersnack Nederland BV, The 
Netherlands) as described previously [27], checked for 
protein content by BCA analysis (Pierce, IL) and kept at 
−  20  °C until use. The adjuvant cholera toxin (CT) was 
acquired from List Biological Laboratories Inc. (Camp-
bell, CA, USA).

Ssniff Spezialdiäten (Soest, Germany) composed the 
semi-purified peanut protein-free AIN-93G-based diets. 
The scFOS/lcFOS diet was supplemented with non-
digestible oligosaccharides, which consisted of a 9:1, 1% 
(w/w) mixture of short-chain fructo-oligosaccharides 
(scFOS: oligofructose; Raftilose P95, Orafti, Wijchen, 
the Netherlands; > 95% degree of polymerization [DP] 
< 6) and long-chain fructo-oligosaccharides (lcFOS: long 
chain inulin; Raftiline HP, Orafti, Wijchen, the Nether-
lands; average DP 23 or higher, < 1% DP < 5) derived from 
chicory inulin. The AIN-93G diet without scFOS/lcFOS 
supplementation was used as control diet. The diets were 
stored at 4 °C prior to use.

Experimental designs
Upon arrival, mice were randomly divided over the con-
trol and experimental groups and were fed control diet. 
To study the potential of scFOS/lcFOS to improve the 
safety and efficacy of SCIT, two study treatment proto-
cols were used (Fig. 1). In both protocols, mice (n = 6–8), 
were sensitized to PE i.g. (6 mg PE, 200 μl/mouse) with 
CT (15 μg/mouse) on three consecutive days, followed by 
a weekly dosing for 4 weeks (PE), as previously described 
[27]. Sham-sensitized mice received CT in PBS alone.

The effect of scFOS/lcFOS on the safety of SCIT was 
studied in a peanut allergy mouse model (treatment pro-
tocol 1, Fig.  1). Depicted groups received the scFOS/
lcFOS supplemented diet from day 35 until the end of the 
study. On day 42, anaphylactic shock symptom scores, 
body temperature levels and mucosal mast cell degran-
ulation after one high dose of SCIT (PE 100  µg  s.c. or 
PBS) were determined. At the end of the study (day 43), 
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mice were killed by cervical dislocation and spleen was 
collected.

The effect of scFOS/lcFOS on the efficacy of SCIT 
was studied in the same peanut allergy mouse model 
(treatment protocol 2, Fig. 1). After sensitization, mice 
were treated for 3 weeks with PE, s.c. (10 µg PE/mouse) 
three times a week. Sham-sensitized and PE-sensitized 
control mice were treated i.g. with PBS alone. The diet 
of selected groups was supplemented with scFOS/
lcFOS from day 28 (after sensitization) until the end of 
the study. On day 64, the acute allergic skin response 
was determined in all mice after i.d. exposure to PE 
in both ear pinnae with 1 µg PE in 20 μl PBS. On day 
70, MMCP-1 levels were determined in blood samples 
collected 30 min after mice were i.g. exposed to 15 mg 
PE in 500  µl PBS. To measure ear thickness, in dupli-
cate prior to and 1 h after i.d. PE exposure in both ear 
pinnae, all mice were anesthetized using inhalation of 
isoflurane. To determine Δ ear swelling as a measure 
for the acute allergic skin response, basal ear thick-
ness (μm) was subtracted from the ear thickness 1  h 

post-challenge. Anaphylactic shock symptom scores 
and body temperature levels were determined after 
i.p. exposure on day 77 with 100 µg PE in 200 µl PBS. 
Body temperature was measured every 10  min after 
the i.p. or high SCIT and OIT challenge using a rec-
tal thermometer and clinical symptoms were scored 
after 40 min, according to the method described by Li 
et al. [28]. At the end of the experiment on day 78, the 
mice were killed by cervical dislocation and blood and 
organs were collected.

Serum levels of MMCP‑1 and allergen‑specific IgE, IgA, 
IgG1 and IgG2a
PE-specific IgA, IgE, IgG1 and IgG2a levels in serum 
were detected by ELISA as previously described [27]. 
Briefly, high-binding 96-wells plates (Costar 3590, 
Corning Incorporated, Corning, NY, USA) were coated 
at 4  °C with 10  µg/ml PE in PBS (IgG1 and IgG2a) 
or with 1  µg/ml rat anti-mouse IgE or IgA (BD Bio-
sciences, Alphen aan den Rijn, The Netherlands) in PBS 
ON. Plates were blocked with 0.5% BSA-ELISA buffer 

Fig. 1  Schematic overviews of the experimental set-ups. Treatment protocol 1 Safety To study the ability of scFOS/lcFOS to improve the safety of 
SCIT in PE sensitized mice. Treatment protocol 2 Efficacy To study the ability of scFOS/lcFOS to improve the efficacy of SCIT in PE sensitized mice. PE, 
peanut extract; CT, cholera toxin; SCIT, subcutaneous immunotherapy; s.c., subcutaneous; i.d., intradermal; i.g., intragastric; i.p., intraperitoneal
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for 1  h (RT). Diluted serum samples were incubated 
for 2 h (RT). For detection, AP-coupled anti-IgG1 and 
IgG2a antibodies were incubated for 1  h (RT). Subse-
quently, 1  mg/ml p-nitrofenylphosphat in diethanola-
mine buffer was used for the color reaction, which was 
stopped with a 10% EDTA solution. To measure PE-
specific IgE and IgA, PE-DIG conjugate solution (1  h 
RT) and peroxidase-conjugated anti-DIG fragments 
(1  h at RT in the dark) were added. After incubation, 
a tetramethylbenzidine substrate solution was used 
and the color reaction was stopped with 2  M H2SO4. 
Absorbance was measured at 405 nm (IgG1 and IgG2a) 
and at 450  nm (IgE and IgA) using an Asys expert 96 
plate reader (Biochrom, Cambourne, UK). Concentra-
tions of IgE, IgA, IgG1 and IgG2a were calculated in 
arbitrary units (AU) using a standard curve of pooled 
sera from PE-sensitized mice.

Serum obtained 30 min after i.g. challenge (treatment 
protocol 1 and 2, Fig.  1) was used to measure Mouse 
Mast Cell Protease-1 (MMCP-1). MMCP-1 was deter-
mined by using an MMCP-1 Sandwich ELISA kit (eBi-
oscience MMCP-1 ELISA Ready-SET-Go Kit, Breda, 
The Netherlands) according to the manufacturer’s 
instructions.

Cytokine release after ex vivo stimulation of spleen 
lymphocytes with PE
8 × 105 cells derived from spleen were cultured (200 μl/
well) in U-bottom culture plates (Greiner, Frickenhausen, 
Germany) using RPMI 1640 medium (Lonza, Verviers, 
Belgium) with 10% FCS, penicillin (100 U/ml)/strepto-
mycin (100 μg/ml) (Sigma). All cells were stimulated with 
culture medium as a negative control, a polyclonal stimu-
lation with anti-CD3/CD28 (1 μg/ml, clone 145-2C11 and 
clone 37.51, eBioscience) or allergen-specific stimulation 
with PE (100 μg/ml). Interleukin (IL)-5, IL-10, IL-13 and 
Interferon-γ (IFN-γ) production by T cells were deter-
mined after 48 h (anti-CD3/CD28) or 96 h (PE) incuba-
tion. Culture supernatants were collected and stored at 
−  20  °C until further analysis with the Ready-SET-Go!® 

ELISA (eBioscience) according to the manufacturer’s 
instructions.

RBL cell degranulation assay
Human FcεRI-expressing rat basophilic leukemia RBL-
SX38 cells transfected with a nuclear factor of activated 
T-cells (NFAT)-responsive luciferase reporter gene, were 
used to measure mast cell degranulation as previously 
described [29]. In short, these RBL cells were plated in 
clear bottom 96 well plates and sensitized using an oli-
goclonal pool of chimeric human (chu)IgE antibodies 
against bovine β-lactoglobulin (BLG, a major allergen in 
bovine whey), as described by Knipping et al. [30]. Here-
after, RBL cells were incubated for 24  h with 0.05 and 
0.5% scFOS/lcFOS (ratio 9:1). To induce degranulation, 
cells were exposed to 1, 10, 100 and 1000  ng/ml BLG. 
After stimulation, luciferase substrate solution contain-
ing cell lysis reagent (One-Glo, Promega Corp., Tokyo, 
Japan) was added to the cells, and chemiluminescence 
was measured. Luciferase expression levels are repre-
sented as the fold increase of relative light units com-
pared with the background expression, after subtraction 
of a blank control (without cells).

Statistics
For all statistical analyses, GraphPad Prism 6.0c software 
for Macintosh (GraphPad Software, San Diego, CA, USA) 
was used. Anaphylaxis symptom scores and cytokine lev-
els were analyzed using Kruskal–Wallis test for nonpara-
metric data with Dunn’s post hoc test. Body temperature 
levels of the peanut allergy safety study were analyzed on 
each time-point by one-way ANOVA and Bonferroni’s 
post hoc test to compare preselected groups. Body tem-
perature levels for the efficacy study were analyzed using 
a one-way repeated measures ANOVA and Bonferroni’s 
post hoc test. The acute allergic skin response was sta-
tistically analyzed by one-way ANOVA and Bonferroni’s 
post hoc test for multiple comparisons to compare pre-
selected groups. Serum MMCP-1 results were log-trans-
formed and statistically analyzed by one-way ANOVA 
and Bonferroni’s post hoc test for multiple comparisons 

Fig. 2  Allergic manifestations evaluated in PE-sensitized mice after fed the scFOS/lcFOS supplemented diet and a singular SCIT dose. The effect 
of scFOS/lcFOS on the safety of SCIT in a peanut allergy model, according to treatment protocol 1 (Fig. 1). a Change in body temperature after 
SCIT challenge on day 42. b Anaphylactic shock symptom scores determined 40 min after SCIT challenge on day 42. c Concentrations of MMCP-1 
in serum collected 30 min after SCIT challenge on day 42. d Cytokine concentrations (IL-5, IL-10, IL-13 and IFN-γ) after ex vivo stimulation of 
splenocytes with PE collected at day 43. e–h Allergen-specific IgE, IgA, IgG1 and IgG2a measured by ELISA in serum of mice. Data are represented 
as mean ± SEM n = 6 mice/group, experiments were performed twice independently. Statistical analysis was performed using a two-way repeated 
measures ANOVA with Bonferroni’s post hoc test (body temperature), a one-way ANOVA with Bonferroni’s post hoc test (MMCP-1 and antibody 
levels), or a Kruskal–Wallis test with Dunn’s post hoc test (Clinical score and cytokine levels). For body temperature; ####P < 0.0001; ##P < 0.01 
compared to the control group. **P < 0.01 compared to same group on control diet. For other results; ***P < 0.001; **P < 0.01; *P < 0.05 compared 
to indicated group. s.c., subcutaneous; i.g. intra gastric; PE, peanut extract; CNTR, control group; FF, scFOS/lcFOS; MMCP-1, mucosal mast cell 
protease-1; IL-, interleukin; IT, immunotherapy

(See figure on next page.)
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to compare preselected groups. Immunoglobulin lev-
els were depicted as mean ± SEM, were log transformed 
prior to testing, and statistical difference compared to the 
PE-sensitized control treatment was analyzed each day 
by a one-way ANOVA and Dunnett’s post hoc test. All 
data are presented as mean ± SEM of 5–8 mice per group 
and results were considered statistically significant when 
P < 0.05.

Results
scFOS/lcFOS reduced anaphylaxis and mast cell 
degranulation after SCIT PE dose
The protective effect of scFOS/lcFOS supplementation 
to reduce side effects induced by SCIT was examined 
by analyzing allergic responses after one SCIT PE dose 
(Fig. 2). A single dose of 100 µg s.c. caused an anaphylac-
tic response in PE-sensitized mice, measured by a severe 
drop in body temperature and high anaphylactic symp-
tom scores compared to the mice receiving a PBS dose 
(Fig.  2a, b). Importantly, mice that were supplemented 
with scFOS/lcFOS after sensitization had a significant 
lower anaphylactic response (Fig. 2a, b).

In addition, exposure of PE-sensitized mice to a 100 µg 
SCIT dose after supplementation with scFOS/lcFOS 
resulted in lower serum MMCP-1 levels compared to the 
group fed the control diet (Fig. 2c).

Cytokine production was measured in culture super-
natant of PE-restimulated splenocytes obtained on day 
43 (Fig.  2d). Splenocytes from SCIT-treated mice, both 
in the presence and absence of scFOS/lcFOS, showed an 
increased PE-induced IL-10 production when compared 
to control-treated mice (Fig.  2d). scFOS/lcFOS feed-
ing did not change the cytokine production (Fig. 2d). In 

addition, scFOS/lcFOS feeding of PE-sensitized mice did 
not change antibody levels in serum compared to mice 
on control diet (Fig. 2e, f ).

Noticeably, scFOS/lcFOS supplementation after sensi-
tization considerably reduced side effects of SCIT possi-
bly by an inhibitory effect on mast cell degranulation.

Incubation with 0.5% scFOS/lcFOS lowered RBL 
degranulation
Since there was indication based on MMCP-1 lev-
els that mast cells were involved in this reduction, we 
next focused on the effect of these oligosaccharides on 
degranulation of basophils in  vitro. scFOS/lcFOS dose-
dependently inhibited the BLG-induced degranulation of 
anti-BLG IgE-sensitized RBL cells (Fig. 3).

SCIT was able to effectively induce protection 
against anaphylaxis without improving effect 
of the dietary intervention
The effect of scFOS/lcFOS on the efficacy of SCIT was 
examined by analyzing allergic responses after various 
PE exposures (Fig. 4). In PE-sensitized control mice, the 
i.p. challenge with PE elicited an anaphylactic response 
compared to the sham-sensitized control mice (Fig.  4a, 
b). This anaphylactic response was characterized by a 
sharp drop in body temperature and high clinical symp-
tom scores. SCIT, with or without scFOS/lcFOS, resulted 
in a lower anaphylactic drop in body temperature com-
pared to the PE-sensitized control mice, whereas scFOS/
lcFOS alone did not (Fig. 4a). Moreover, SCIT effectively 
decreased anaphylactic symptom scores compared to the 
non-treated PE-sensitized mice (Fig. 4b).

The i.d. PE-challenge resulted in an increased 
acute  allergic  skin  response,  as characterized by an ear 
swelling response 1  h after injection, in PE-sensitized 
control mice compared to sham-sensitized control mice 
(Fig.  4c). SCIT treatment did not change ear swelling 
compared to the PE-sensitized control mice (Fig.  4c). 
However, scFOS/lcFOS dietary supplementation resulted 
in a reduced ear swelling compared to the PE-sensitized 
control group again showing reduction of the allergic 
response (Fig. 4c).

Levels of MMCP-1, reflecting mucosal mast cell 
responses, were measured in serum collected 30  min 
after i.g. challenge (day 70, Fig. 4d). MMCP-1 levels were 
increased in PE-sensitized control mice compared to 
PBS-sensitized control mice (Fig.  4d). SCIT treatment 
in combination with scFOS/lcFOS resulted in lower 
MMCP-1 levels after i.g. challenge compared to only 
scFOS/lcFOS dietary intervention (Fig. 4d).
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SCIT increased IgE and IgG levels
On different time-points antibody concentrations were 
determined (Fig. 5). PE-sensitized mice showed enhanced 
IgE, IgG1 and IgG2a levels compared to the sham-sensi-
tized mice (day 35, 50, 63, Fig. 5a–c). SCIT, with or with-
out scFOS/lcFOS, first increased IgE and IgG1 and later 
IgG2a levels compared to non-treated PE-sensitized mice 
(day 50 and 63, Fig.  5a–c). The i.g. challenge induced 
IgG2a levels in SCIT-treated mice compared to non-
treated PE-sensitized mice (day 70, Fig. 5c). After the i.p. 
challenge IgE levels increased in non-treated PE-sen-
sitized mice but SCIT treatment protected against this 
increase (day 78, Fig. 5a).

SCIT induced Th2 cytokine production in spleen
To further study the effects of the treatments in reduc-
ing allergic symptoms, cytokine production by T cells 
was studied. No differences were found between cytokine 
concentrations upon allergen-specific stimulation of lym-
phocytes derived from PE-sensitized control mice and 
sham-sensitized control mice (Fig.  6a–d). scFOS/lcFOS 
supplementation did not affect the cytokine production 
(Fig. 6a–d). SCIT treatment, with or without the scFOS/
lcFOS, increased IL-5, IL-10 and IL-13 production by PE-
stimulated splenic lymphocytes when compared to PE-
sensitized control mice (Fig. 6a–c), showing that scFOS/
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lcFOS did not impact the immunological modulation 
induced by SCIT.

Discussion
To reduce side-effects while maintaining efficacy of AIT 
for food allergy, several new treatment concepts have 
been investigated, as reviewed in [31–34]. The combina-
tion of AIT with nutritional interventions may provide a 
new possibility to enhance the safety and efficacy of AIT 
due to a reduction in side-effects during dose increas-
ing protocols. Our results indicate that supplementation 
of the diet with scFOS/lcFOS reduced the side effects 
caused by a single PE SCIT dose. This effect appears 
to be due to a direct effect on mast cells, since scFOS/
lcFOS reduced mucosal mast cell degranulation in  vivo 
and inhibited degranulation of RBL cells in  vitro. These 
results support the concept that nutritional interventions 
have the potential to improve safety of SCIT.

The immunologic mechanisms underlying AIT are not 
fully understood and the observed desensitization or tol-
erance induction by AIT can occur via various, interre-
lated pathways [35]. Evidence from mouse models have 
shown that tolerance induction by OIT may be due to 
the activation of Tregs, i.e. CD4+CD25+FoxP3+ cells 
and IL-10- and TGF-β-producing Tregs [25, 36]. This is 
reflected in OIT treated peanut allergic patients by sig-
nificant changes in antigen induced T-cell function and 
demethylation FoxP3 CpG sites after OIT [37]. In the 
used mouse model, OIT induced allergen-specific IgA 
and IgG1 antibodies [25, 38, 39]. Recently, IgG4 and IgA 

antibodies have been shown to be prominent immuno-
globulins in the sustained regulation of food allergies in 
human immunotherapy trials [6, 40]. In a murine model, 
mast cell degranulation and IgE-mediated systemic ana-
phylaxis induced by allergen ingestion were suppressed 
by allergen-specific IgG antibodies in the serum [41]. 
Accordingly, in a human/mouse chimeric model of res-
piratory allergy, it was demonstrated that post‐AIT sera 
containing AIT‐induced blocking antibodies is able to 
ameliorate allergic airway responses [42]. This suppres-
sive effect of IgG might explain the ability of SCIT to 
reduce anaphylaxis after i.p. challenge.

This efficacy of SCIT to lower allergic manifestations, 
as shown by the decreased anaphylaxis after i.p. chal-
lenge, was not affected by scFOS/lcFOS. Peanut allergy 
in humans is Th2-dependent [43], during sensitization to 
peanut, priming of allergen-specific Th2 cells results in 
the production of Th2 cytokines (such as IL-4 and IL-13), 
which are responsible for  class switching by B cells, 
allowing IgE production. In the current model, SCIT 
treatment showed a clear induction of cytokine produc-
tion of IL-5, IL-13 and IL-10 by spleen-derived lympho-
cytes. These data may suggest that SCIT does not depend 
on reducing the Th2 response, but rather on inducing the 
regulatory T cell response, which remained unaffected by 
scFOS/lcFOS.

Using a food allergy mouse model, it was shown that 
oral treatment with probiotics is able to reduce both 
systemic and local anaphylactic symptoms induced 
by oral challenge with the sensitizing allergen shrimp 
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tropomyosin [44]. Similar effects have been demon-
strated in clinical trials, showing that probiotics are able 
to modulate the mucosal immune response, and that 
specific strains, especially lactic acid bacteria, are able 
to reduce allergic symptoms [45, 46]. Besides probiot-
ics, also prebiotic oligosaccharides are able to reduces the 
incidence of atopic dermatitis [47, 48]. However, stud-
ies using prebiotics for food allergy are limited, and the 
mechanism of clinical benefit is still unknown. Impor-
tantly, non-digestible oligosaccharides are detected in 
serum and urine of piglets fed galacto-oligosaccharides, 
meaning they can cross the gut epithelial barrier and 
could directly affect immune cells [49]. We show that 
0.5% scFOS/lcFOS inhibit degranulation upon allergen 
challenge in vivo and in vitro. These findings are in line 
with those of Xu et  al. who show that treatment with 

sulfated oligosaccharides, extracted from Eucheuma (E.) 
cottonii, lowered the serum levels of MMCP-1 after chal-
lenge in tropomyosin-allergic mice [50]. Moreover, these 
oligosaccharides were able to inhibit the secretion of 
allergy-related mediators like β-hexosaminidase, hista-
mine and IL-4 and TNF-α [50].

We and others hypothesized that the combination 
of AIT with immunomodulatory components, which 
addresses both specific and unspecific (e.g. linked to 
innate effector cells such as mast cells) modulation of 
the immune response respectively, could be a promising 
strategy to improve efficacy and safety of AIT. Recently, 
we have shown that oligosaccharides are capable of 
improving the efficacy of OIT [39], and here we show 
that these substances also improve safety of SCIT. Pre-
viously it was shown that combining subcutaneous or 
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sublingual immunotherapy with bacterial adjuvants or 
Toll-like receptor ligands could enhance tolerogenic-
ity in allergic rhinitis [14–16, 51, 52], a strategy which is 
already successfully translated to humans [18, 53–55]. In 
peanut allergic children, OIT administration was com-
bined with the probiotic Lactobacillus rhamnosus [19]. 
The authors report a long-lasting clinical benefit and 
persistent sustained unresponsiveness to peanut after 
4 years without treatment [20]. Although no control (only 
OIT) was included, the proportion of children experienc-
ing adverse events was lower compared to other trials 
where only OIT was used [19, 56, 57]. This study suggests 
that the combination of OIT and probiotics may lower 
the incidence of adverse events making this treatment 
clinically feasible.

Conclusions
In summary, we show that scFOS/lcFOS reduced ana-
phylaxis caused by a single PE SCIT dose, hereby improv-
ing the safety profile of SCIT in a mouse model. However, 
scFOS/lcFOS was not able to further improve the efficacy 
of SCIT in the current protocol. Nevertheless, when side-
effects are reduced higher dose of SCIT can be used for 
tolerance induction. Translated to clinical practice, the 
improvement of the safety profile could facilitate SCIT 
for peanut allergic patients more appropriate, although 
further studies are needed to determine the long-term 
supportive role of scFOS/lcFOS for AIT.
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